1. Introduction

The epidermal growth factor receptor (EGFR) is a major target of molecular anticancer therapy. Two main strategies targeting EGFR have been developed: monoclonal antibodies, directed against the extracellular domain of EGFR, that inhibit its phosphorylation/activation and stimulate internalization and small-molecule inhibitors of the tyrosine kinase domain (tyrosine kinase inhibitors, TKIs) [1]. Gefitinib is an orally active, selective EGFR TKI used in the treatment of patients with advanced NSCLC [1,2]. This drug produces tumor regression in 10–20% of patients with heavily pretreated NSCLC [2]. Nevertheless, it appears that greater benefit can be obtained with EGFR TKIs in some patient subgroups, such as females, never smokers, Asians and patients with adenocarcinoma histology. Although clinical characteristics may identify candidates for EGFR TKIs, patient selection should rely on the biological features of the tumor, in particular the presence of EGFR gene mutations.

However, not all the tumors having activating mutations are associated with an enhanced response mainly because of additional genetic lesions that relieve the tumor of its dependence on the EGFR signaling pathways [3]. Moreover, acquired resistance occurs in virtually all NSCLC tumors that initially respond to EGFR TKIs therapy. In approximately half of NSCLC cases that showed an initial response to reversible EGFR tyrosine kinase inhibitors and subsequently progressed, resistance was associated with the emergence of a secondary mutation within the EGFR kinase domain: substitution of threonine 790 with methionine (T790 M). Additional mechanisms of resistance have been described, such as...
the activation of alternative tyrosine kinase receptors (IGF-1R), amplification of the MET gene and constitutive activation of signaling pathways downstream of EGFR [4–7]. Resistance can also be mediated by a reduced intracellular level of drug resulted from poor uptake, increased metabolism or enhanced efflux. Membrane transporters have been found to play an important role in the distribution and accumulation of anticancer drugs and in chemosensitivity/chemoresistance [8].

Although gefitinib is a known inhibitor of the efflux transporter ABCG2 (ABC subfamily G member 2; breast cancer resistance protein/mitoxantrone resistance protein) and although it has been reported that this drug has the ability to reverse ABCB1 (ABC subfamily B member 1; P-glycoprotein) and ABCG2-mediated multidrug resistance in cancer cells [9–11], the mechanism by which gefitinib is taken up into the cell is still unknown.

In addition to the transporters involved in drug efflux a number of transporters are responsible for drug uptake. The major influx proteins belong to the largest superfamily of transporters, the solute carrier (SLC) superfamily [12,13]. This group of transporters includes the SLCC2 family encompassing the organic cation transporters (hOCTs), the novel organic cation transporters (OCTNs) and the organic anion transporters (OATs). The hOCTs possess an affinity for positively charged endogenous (epinephrine, norepinephrine, etc.) and exogenous substances (1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), quinine) [12]. In addition, several drugs have been identified as hOCTs substrates and their number is increasing. hOCTs substrates include antiviral drugs, the anti-diabetic drug metformin [14], anticancer drugs cisplatin and oxalaplatin [15,16], doxorubicin [17] and the tyrosine kinase inhibitor imatinib [18,19]. In view of our previous experience on nutrient transport [20–22], we characterized the influx of gefitinib and analyzed the functional characteristics of the transporter in a panel of NSCLC cell lines. Noteworthy aspects of this study are the possible pharmacological interaction between gefitinib and other drugs during cellular uptake and the determination of the intracellular concentration of gefitinib required to inhibit EGFR autophosphorylation in cells carrying wild-type or mutant receptors.

2. Materials and methods

2.1. Cell culture

The human NSCLC cell lines H322, H1299, Calu-1, H1975, PC9 and SKLU-1 were cultured as recommended. All media were supplemented with 2 mM glutamine, 10% fetal bovine serum (FBS Gibco, Life Technologies). Cell lines were from the American Type Culture Collection (Manassas, VA, USA) and were maintained under standard cell culture conditions at 37 °C in a water-saturated atmosphere of 5% CO2 in air.

The H1975 cell line was kindly provided by Dr. E. Giovannetti (Department of Medical Oncology, WV University Medical Center, Amsterdam, The Netherlands), and the PC9 cell line was kindly provided by Dr P. Janne (Dana-Farber Cancer Institute, Boston, MA). A table listing the characteristics of the cell lines has been recently published by our group [4] and as reported, cells showing IC50 for gefitinib <1 µM were considered sensitive (PC9, H322) and cell lines with IC50 > 8 µM (SKLU-1, Calu-1, H1975, H1299) were considered resistant.

HEK293 cells stably transfected with hOCT1 and hOCT2 were kindly provided by Dr. H. Koepsell (Institute of Anatomy and Cell Biology, Würzburg, Germany) and were cultured in Dulbecco’s modified Eagle’s medium supplemented with G418 sulfate (600 µg/mL Sigma–Aldrich, St. Louis, MO, USA).

2.2. Drug treatment

Gefitinib (ZD1839/Iressa) was synthesized as described elsewhere [23]. In all assays, the drug was dissolved in DMSO immediately before its addition to the media. The concentration of DMSO never exceeded 0.1% (v/v) and equal amounts of the solvent were added to control cells. The prototypical cations MPP, TEA and the inhibitors prazosin, procainamide, quinidine, verapamil, corticosterone, carnitine, choline, β-estradiol were purchased from Sigma–Aldrich (St. Louis, MO, USA).

2.3. Transport measurements

Labeled [3H]gefitinib (7.64 Ci/mmol) and labeled N-[Methyl-3H]MPP(+) (86.4 Ci/mmol) were respectively custom made by and purchased from Perkin Elmer (Boston, MA, USA). In all the experiments radiolabeled drug was mixed with unlabeled drug to reach the desired final concentration. The measurements of [3H]gefitinib and N-[Methyl-3H]MPP uptake by cells were essentially performed as described previously for amino acids [20] and creatine [21] with minor modifications. Cells were seeded into 4 cm2 wells of disposable multiwell trays (UNNC, Rosekilde, Danmark) to give the desired cell density, and incubated for 48 h in complete growth medium at 37 °C. After removing medium, the cells were quickly washed with Earle’s balanced salt solution containing 0.1% glucose (uptake buffer) and immediately incubated in uptake buffer at 37 or 4 °C for the desired period of time in the presence of labeled gefitinib or MPP. For the cis-inhibition study, the uptake of [3H]gefitinib or N-[Methyl-3H]-MPP was achieved by adding various concentrations of unlabeled inhibitors to the uptake buffer. For the trans-inhibition study the uptake of [3H]gefitinib or N-[Methyl-3H]-MPP was measured after 15 min of preloading with unlabeled compounds. In some experiments the cells were incubated for 15 min at 37 °C in Earle solution prior to measurement of transport activity in order to reduce the intracellular levels of osmolites, mainly amino acids (depletion phase). The Na+-free buffer was modified by replacing NaCl with equimolar concentration of choline chloride or lithium chloride. Uptake buffers of varying pH (5.5, 6.5, 7.5, 8.5) were prepared by adding 25 mM MES (pH 5.5), PIPES (pH 6.5), Hepes (pH 7.5) or Tris–HCl (pH 8.5) to uptake buffer without bicarbonate. Membrane potential alteration, K+ was raised to intracellular concentration with the concomitant reduction in Na+. The osmolalities of the different uptake buffers were checked with a vapour-pressure osmometer (Wescor) and values were close to 0.3 osmol (kg H2O)−1. The incubations were stopped by removal of the uptake buffer and the cells were quickly washed three times with fresh cold solution. Trichloroacetic acid (TCA, 5%, w/v) was added to denature the cells and the radioactivity in samples of the acid extracts was measured by scintillation counting. Cell proteins, precipitated by TCA, were dissolved in 0.5 N NaOH and their concentration determined by a dye-fixation method (Bio-Rad) using bovine serum albumin as standard [24].

2.4. EGFR autophosphorylation assay

Inhibition of EGFR autophosphorylation was determined using a specific anti-phosphotyrosine antibody by Western blot analysis (Cell Signaling Technology, Beverly, MA, USA) as previously described [25] and by specific enzyme-linked immunosorbent assays (ELISA) (Millipore S.A.S., Molsheim, F). Briefly, cells were preincubated for 10 min with the indicated concentrations of gefitinib before stimulation with 0.1 µg/ml EGF for 5 min. After protein extraction EGFR phosphorylation at the tyrosine residue at position 1068 was evaluated by Western blotting and by ELISA and normalized to protein content and to the total EGFR.
2.5. Determination of cell volume

Intracellular volumes were estimated by measurement of the equilibrium distribution of 3-O-methyl-\[^{1}
{H}\]glucose as previously described [20] using the method of Kletzien et al. [26].

2.6. Real-Time RT-PCR

Total RNA was isolated by the TRIzol1 reagent (Invitrogen, Carlsbad, CA, USA) and reverse-transcribed as previously described [21].

The transcript level of SLC22A1, SLC22A2 and SLC22A3 genes was assessed by Real-Time qRT-PCR on an iCycler iQ Multicolor RealTime PCR Detection System (Bio-Rad, Hercules, CA, USA).

The ProbeFinder software (Roche Diagnostics, Mannheim, Germany) was used to design specific primers, spanning the exon–exon junctions, and locked nucleic acid probes for target and control genes [phosphoglycerate kinase 1 (PGK1), ribosomal protein L13 (RPL13) and hypoxanthine-guanine phosphoribosyltransferase (HPRT)]. Primers and probes included: SLC22A1-F (5'-TCCTCTCCCTGCTCTACTACTGG-3'), SLC22A1-R (5'-TGGTCCATTATCTTTATTGCTTCA-3'), SLC22A1-probe (5'-FAM GGTGGCTG 3'DQ); SLC22A2-F (5'-TTCTTCTTCTGCTCTATTACTGGTG-3'), SLC22A2-R (5'-GGCTTCAGCTCAGCTCACC-3'), SLC22A2-probe (5'-FAM GGTGGCTG 3'DQ); SLC22A3-F (5'-AAGGAATCCATTA-GCCATC-3'), SLC22A3-R (5'-TCCGAGTAAATCGCAAGC-3'), SLC22A3-probe, (5'-FAM GGAGGAAG 3'DQ); PGK1-F (5'-GGA-GAACCTCGGCTTTAAT-3'), PGK1-R (5'-CTGCTCGGCTTTAATCTT-3'), PGK1-probe (5'-FAM GGAGGAAG 3'DQ); RPL13-F (5'-ACAGCTGCTCAGCTCAC-3'), RPL13-R (5'-TGCCACATGCCTCTA-AATAAG-3'), RPL13-probe (5'-FAM CGAGGCA 3'DQ); HPRT-F (5'-TGACCTTATTATTTGTGTCAC-3'), HPRT-R (5'-CGACGCAA-GGACGACAGCTGCTTCTTCA-3'), HPRT-probe (5'-FAM GCTGGA-3'DQ).

Duplicate assays were run for each sample and each plate included a standard curve and both a negative (water instead of cDNA) and a positive (cDNA from HEK293 cells) control. The relative transcript quantification was calculated by the geNorm algorithm for Microsoft ExcelTM after normalization by expression of the control genes and expressed in terms of arbitrary units (a.u.).

2.7. Determination of lactate production

Medium and intracellular lactate concentration was determined spectrophotometrically by an enzymatic assay (Biovision) according to the instructions of the manufacturer and absorbance
read at 570 nm. Intracellular lactate was extracted with ice 10% acetic acid and the acid-soluble supernatant was lyophilized and assayed upon resuspension in PBS.

The results were expressed as nmol (intracellular) or µmol (extracellular) of lactate, per milligram of protein.

2.8. Kinetic and statistical analysis

The kinetic and statistical analyses were carried out using GraphPad Prism version 5.00 software (GraphPad Software Inc., San Diego, CA). Results are expressed as mean values ± standard deviations (SD) for the indicated number of independent measurements. The K_m and V_{max} values were obtained by fitting the Michaelis–Menten equation to the data. IC50 values for inhibition of gefitinib uptake by cationic transporter inhibitors were calculated by fitting the experimental data with a hyperbolic function and constraining V_{max} to 100.

The significance of differences between the mean values recorded for different experimental conditions was calculated by the Student’s t-test, and P values are indicated where appropriate in the figures and in their legends. A P-value < 0.05 was considered as significant.

3. Results

3.1. Time course and kinetics of gefitinib uptake

We first examined the time-course of [3H]gefitinib uptake at a concentration of 1 µM at 37°C or 4°C in H322 cells (Fig. 1A). We observed a significant difference in the uptake at 4°C compared with 37°C at all time points suggesting that gefitinib uptake is an active process. The passive influx component at 4°C never exceeded 20% of the total influx. The uptake at 37°C increased in a time-dependent manner and it was almost linear with time up to 10 min reaching a plateau at 15 min. The kinetics of the active transport were then evaluated in H322 (gefitinib-sensitive cell line), H1299, SKLU-1 and H1975 cells (resistant-cell lines) [4] (Fig. 1B–E). Cells were incubated for 5 min with [3H]gefitinib at concentrations ranging between 1 and 50 µM and non-mediated passive influx was subtracted before performing kinetic analysis. The mediated uptake as computed by non-linear regression analysis yielded similar Michaelis–Menten constants (K_m, values, µM) among the cell lines tested (34 ± 5 in H322, 29.84 ± 2.9 in H1299, 32.5 ± 6.4 in H1975, 43 ± 9.4 in SKLU-1) and different V_{max} values (pmol/mg of protein/5 min) (4564 ± 352 in H322, 8010 ± 397 in H1299, 4873 ± 494 in H1975 and 24174 ± 3006 in SKLU-1).

The Eady–Hofstee plot (inset) showed a single straight line suggesting that specific gefitinib uptake was mediated by a single component in these NSCLC cell lines.

3.2. Effects of extracellular Na⁺ removal, membrane depolarization, pH and cell density on [3H]gefitinib uptake

To further explore the characteristics of the gefitinib transport system, we analyzed in H322 cells the Na⁺-, potential- and pH-dependence of [3H]gefitinib uptake.

When Na⁺ was replaced with choline chloride or lithium chloride (Fig. 2A) no significant difference was detected suggesting that the uptake of gefitinib was independent of extracellular Na⁺ and of high level of choline. Moreover, despite a large increase in extracellular K⁺ concentration (110 mM) gefitinib uptake was unaffected indicating that depolarization of the membrane potential did not modify the transport activity. Our experimental results, not shown, indicated that the depletion of intracellular nutrients (mainly amino acids) did not affect the initial rate of [3H]gefitinib uptake suggesting that mechanisms of trans-inhibi-

Fig. 2. Influence of Na⁺, membrane potential, pH and cell density on [3H]gefitinib uptake in H322 cell line. The initial rate (5 min) of 1 µM [3H]gefitinib was measured in the presence of NaCl (control), choline chloride, LiCl and KCl as the main osmolyte (A); as function of different pH values during uptake (B) and of cell density (C) at 4°C (□) and 37–4°C (○). Values given are the means (±SD) of four independent determinations and the significance of differences between the mean values was calculated by Student’s t-test (*P < 0.05; ***P < 0.001).

3.3. Effects of different inhibitors on gefitinib cellular uptake

We then analyzed the inhibitory effect of different cationic organic compounds on the gefitinib uptake in H322 cells (Fig. 3A) by using different cationic transporter substrates/inhibitors (panel B, Fig. 3) [12]. Prazosin, procarinamide, verapamil and quinidine
markedly decreased gefitinib uptake, while corticosterone, carnitine, choline, β-estradiol and the prototypical organic cations TEA and MPP did not significantly reduce gefitinib uptake. Moreover, TEA and MPP failed to inhibit gefitinib uptake up to 5 mM (data not shown). Similar results were obtained in Calu-1 cells (not shown).

The IC50 values for prazosin, procainamide and verapamil inhibition of [3H]gefitinib uptake were calculated from the inhibition curves shown in Fig. 3C. Prazosin showed the highest potency (IC50 4.2 ± 1.3 μM), while procainamide and verapamil were less effective (IC50 182 ± 1.3 and 59 ± 1.4 μM, respectively).

Because of the positive results obtained with substrates/inhibitors, the expression of the mRNA for hOCT1, hOCT2 and hOCT-3 was then investigated by RT-PCR in H322, H1299, Calu-1, SKLU-1 and H1975 cell lines (Fig. 4A). hOCT2 was not detected while hOCT1 was expressed in all the cell lines, except for H1299, even though the expression levels showed substantial differences among these cell types; hOCT3 was expressed at higher levels in four of the five cell lines tested (H1299, Calu-1, SKLU-1, H1975).

In the light of the gefitinib-uptake results, we concluded that there was no correlation between gefitinib uptake and hOCT1, hOCT2 or hOCT-3 expression. In fact, gefitinib was actively transported in H1299 lacking hOCT1 expression and in H322 lacking hOCT-3 expression; moreover, all the cell lines were null for hOCT2 expression.

This conclusion was also supported by measuring MPP and gefitinib uptake in kidney embryonic HEK293 cells overexpressing hOCT1 and hOCT2. As shown in Fig. 4B and C hOCT1 and hOCT2 overexpression significantly increased the uptake of N-[Metil-3H]MPP but did not affect the uptake of [3H]gefitinib. However, cis-inhibition experiments demonstrated that gefitinib significantly reduced N-[Metil-3H]MPP uptake in overexpressing hOCT1 and to lesser extent in overexpressing hOCT2 HEK293 cells (Fig. 4D) suggesting that gefitinib affected hOCT1 and hOCT2 transport function but not as a competitive substrate. This conclusion is also supported by trans-inhibition experiments showing that uptake of MPP was significantly reduced when hOCT1 HEK293 cells were preloaded with gefitinib (not shown).

3.4. Effect of the intracellular concentration of gefitinib on the inhibition of EGFR autophosphorylation

We then analyzed the effect of different intracellular concentrations of gefitinib, obtained by varying the extracellular concentration, on the level of EGFR autophosphorylation in NSCLC cell lines characterized by different EGFR status (wild type vs mutant). The intracellular concentration of gefitinib was obtained by dividing the gefitinib content, expressed as pmol/mg of protein/15 min, by the corresponding values of cell volume recorded under the same experimental conditions.

As reported in Fig. 5A gefitinib was concentrated in the intracellular compartment in all cell lines, with a ratio in/out between one hundred and three hundred depending on the extracellular level and the cell line tested. It is of note that at 1 μM (the maximum plasma concentration of gefitinib observed at the clinically relevant dose (250 mg/day) [27]) the intracellular concentration in resistant-cell lines was similar (Calu-1) or even higher (H1299, SKLU-1, H1975) than that in gefitinib-sensitive (PC9 and H322) cells.

As shown in Fig. 5B in all the cell lines tested, EGF stimulation induced a significant phosphorylation of tyr1068 and gefitinib inhibited EGFR autophosphorylation in a dose-dependent manner. We demonstrated a significant correlation between the intracellular gefitinib concentration and the inhibition of EGFR phosphorylation in all cell lines except H1975 (carrying T790 M mutation). Intracellular concentrations of gefitinib that completely inhibit EGFR autophosphorylation ranged from 150 to 300 μM in cell
models carrying wild-type receptor (H322, H1299, Calu-1, SKLU-1). The PC9 cell line, harbouring a deletion mutation on exon 19 of the EGFR gene (delE746-A750), showed maximal inhibition at intracellular gefitinib concentration of 10 μM whereas H1975 showed no inhibition up to 1 mM.

3.5. Effect of cell density and lactate on intracellular gefitinib accumulation and EGFR autophosphorylation

Since cell density and extracellular pH affected gefitinib uptake (see Fig. 2B and C), we investigated the effect of high density and lactate on gefitinib uptake. We found that both high cell density and lactate concentration increased the intracellular gefitinib concentration.

Fig. 4. Effect of hOCTs expression on [3H]gefitinib transport. (A) The expression of hOCT1, hOCT-2 and hOCT-3 in NSCLC cell lines was detected by RT-PCR as described in Section 2. The experimental conditions used for RT-PCR were validated using as positive control mRNA isolated from stably transfected HEK293 cells. The cellular uptake at 1 μM of the substrates [3H]MPP (B) or [3H]gefitinib (C) was determined in hOCT1- and hOCT2-HEK293 transfected cells and in the corresponding MOCK cells (WT). Values given are the means (±SD) of three independent determinations (***P < 0.001 versus mock cells). (D) Stably transfected HEK293-hOCT1 and HEK293-hOCT2 cells were incubated with 3 mM [3H]MPP for 5 min. The uptake of [3H]MPP was determined both in the absence (empty columns) or in the presence (filled columns) of increasing concentration of gefitinib (1–100 μM). Values given are the means (±SD) of three independent determinations and are expressed in percent of control. *P < 0.05; **P < 0.01; versus control.

Fig. 5. Intracellular gefitinib concentration in NSCLC cell lines and its effect on EGFR autophosphorylation. (A) NSCLC cell lines were incubated with the indicated extracellular [3H]gefitinib concentration for 15 min and then intracellular gefitinib concentration was calculated by dividing the gefitinib content expressed as pmol/mg of protein by the corresponding values of cell volume recorded in the same experimental condition as described in Section 2. (B) NSCLC cells were incubated for 10 min with the indicated extracellular concentrations of gefitinib before stimulation with 0.1 μg/ml EGF for 5 min. Western blot analysis was performed by using monoclonal antibodies directed to p-EGFR(p-Tyr1068) and to EGFR. The experiment, repeated three times, yielded similar results. The immunoreactive spots at each point were quantified by densitometric analysis, ratios of phosphotyrosine/total EGFR were calculated, values were expressed as percentage of inhibition versus control and were plotted as function of the intracellular concentration of gefitinib. Similar results were obtained by using ELISA kit to calculate the percentage of inhibition versus control.
low pH on intracellular gefitinib content and inhibition of EGFR autophosphorylation in the H322 cell line. As shown in Fig. 6A, cells at high density exposed to pH 5.5 accumulated levels of gefitinib more than five times lower than cells at low density exposed to physiological pH; consequently the EGFR autophosphorylation, evaluated by Western blotting and shown in Fig. 6B, was only partially reduced at 1 μM gefitinib.

In most of our cell lines phenol red, present in culture media, exhibited a gradual color transition from red to yellow over the pH range 7.5–6, more evident in cell cultured at high density. Since this acidification of extracellular compartment could be associated with production of lactate we measured the level of lactate in the intracellular compartment and in the medium in some sensitive and resistant cells after 48 h of incubation.

As shown in Fig. 6C a significant production of lactate was observed in all the cell lines tested irrespective of sensitivity to gefitinib and lactate production acidified the extracellular compartment in a dose dependent manner. On the basis of extracellular concentration of lactate extruded by the cells (ranging between 10 and 30 mM) we tested the effect of different concentrations of lactate on gefitinib uptake in H322 cell line (Fig. 6D). 10 mM lactate (pH 6.6) inhibited gefitinib uptake by 20% and the inhibition was more than 80% at 30 mM (pH 5.0). These data suggest that the extrusion of lactate may contribute in decreasing the pH, which in turn can influence the uptake and the intracellular accumulation of gefitinib.

4. Discussion

Gefitinib is a reversible competitive inhibitor of the tyrosine kinase domain of EGFR, and has been shown to have antitumor activity in a subset of patients with NSCLC (10% of patients from Europe and 30% from East Asia) [2,3,28]. Tumors responding to EGFR TKIs harbour mutations in the tyrosine kinase domain, the most frequent being L858R and Del (746–750), and the mutant kinases showed a reduced affinity for ATP and increased affinity for gefitinib [29]. Gefitinib is dosed at 250 mg/day, it is absorbed by 60% after oral administration and once absorbed it is 90% plasma protein-bound [28]. Gefitinib is extensively distributed in tissues with the highest levels being found in liver, kidney, gastrointestinal tract and lung as evaluated by a rat tissue distribution study [30]. In tumor xenograft models, gefitinib tumor concentrations were much higher than the corresponding plasma concentration [31] and in a pilot Phase II study in early stage NSCLC, intratumor gefitinib levels of about 33 μM versus 0.5 μM in plasma after 28 days of gefitinib treatment were reported [32]. Our research was designed to supplement this information by studying the gefitinib uptake in different lung cancer cell lines and by exploring its possible relationship with gefitinib resistance and sensitivity. To our knowledge, no studies designed to identify the mechanisms involved in cellular uptake of gefitinib have been reported.

Recent studies showed that imatinib, a tyrosin kinase inhibitor effective in the treatment of chronic myeloid leukemia and gastrointestinal stromal tumor, is taken up by an active cellular process, mediated by hOCT1 in a variety of leukemia cell lines [18,33] and by hOCTN2 in transfected HEK293 cells [34]. On the other hand, no evidence for active uptake has been found for the second generation of BCR-ABL tyrosine kinase inhibitors dasatinib and nilotinib [35,36], nor for the multikinase inhibitors sorafenib and sunitinib [37].
Our results demonstrated that uptake of gefitinib was predominantly an active rather than a passive process as demonstrated by the temperature dependency of the uptake process and the concentrative activity of the transporter which was able to concentrate gefitinib intracellularly more than two hundred times depending on the extracellular concentration and the cell model analyzed. Analysis of the relation between initial velocity of gefitinib transport and substrate concentration suggested that only a high-affinity saturable transport component contributes to total gefitinib uptake. The affinity \((K_m)\) of the carriers for substrate was similar in all the cell models tested, while the capacity \((V_{\text{max}})\) of the system of mediation and the intracellular concentration of gefitinib, as shown in Fig. 5A, was significantly higher that these cells -1 cells. This result is consistent with the interpretation that these cells have an increased number of transporters or a higher rate of transfer of the gefitinib-carrier complex across the membrane.

The gefitinib uptake was sodium- and potential-independent, but was sensitive to changes in cell density and extracellular pH, with inhibition of the transport activity at high density and low extracellular pH. Changing the extracellular pH can either affect the protonation state and consequently the charge of the substrate and/or the substrate binding pocket of the transporter under investigation. Moreover, in our study we demonstrated that in cells maintained at low density and at pH 7.5, the intracellular accumulation of gefitinib was five times higher than in cells maintained at high density and low pH (see Fig. 6); in these cells the EGFR autophosphorylation was still evident in the presence of 1 \(\mu\text{M}\) gefitinib, a concentration that completely inhibited EGFR autophosphorylation in a panel of NSCLC cell lines harbouring wild-type receptor [4].

The production of lactic acid under aerobic or anaerobic conditions contributes to the acidic microenvironment in many types of tumor [38]. Lactate is extruded by proton-coupled monocarboxylate transporters MCTs [39], mainly to avoid cytotoxic intracellular accumulation.

We measured the level of lactate in the intracellular compartment and in the medium in sensitive and resistant cells and we found a significant production and accumulation of lactate both inside and outside the cells. Moreover, the lactate level correlated with a decrease in extracellular pH and significantly affected gefitinib uptake.

Our results suggest that the uptake of gefitinib and consequently the inhibition of the EGFR signaling might be reduced in tumors characterized by elevated lactate production.

Since at physiological pH gefitinib is an organic cation, in our search for gefitinib transporters we examined eleven compounds known to be selective inhibitors of hOCTs and of hOCTNs (see panel B, Fig. 3: [12]). Only the hOCT1 inhibitors tested (prazosin, quinidine, procainamide and verapamil) significantly inhibited the uptake of gefitinib; prazosin exhibiting the highest potency (IC50: 4.2 \(\mu\text{M}\)). However, discrepancies were observed between the inhibition values for hOCTs prototypical substrates (MPP and TEA) obtained in this study and those reported in the literature, as these compounds did not inhibit gefitinib uptake up to 5 \(\mu\text{M}\).

hOCT1 mRNA is well expressed in NSCLC cell lines as reported in previous studies on human tissues [40,41]. In accordance with the observation that gefitinib was actively transported in H1299 lacking hOCT1 expression, our data using a stably transfected cell model indicate that hOCT1 was not involved in the uptake of gefitinib despite the inhibitory effect exerted by some hOCT1 inhibitors. RT-PCR data also showed that hOCT3 mRNA was well expressed in many of the cell line tested; however, corticosterone and ß-estradiol (hOCT3 inhibitors) did not affect gefitinib uptake in Calu-1 cells and on the other hand H322, lacking hOCT3 expression, significantly took up and accumulated gefitinib.

Choline has a similar chemical structure to gefitinib [42] and as an organic cation is known to be a substrate for hOCTs. hOCT-1 and hOCT-2 accept choline as a substrate with low affinity, hOCT-3 does not recognize choline as a substrate [43]. A different member of the choline transporter family unrelated to hOCT or CHT (high-affinity choline transporters) subgroup and named choline transporter-like protein 1 (CTL1) has been characterized in neuronal and tumor tissues including lung adenocarcinoma [43,44]. It has been reported that gefitinib reduced uptake of labeled choline, mainly mediated by CTL1, in A549 lung cancer cell line [42]. However, our cis-inhibition experiments showed that a high level of choline (see Fig. 2A) did not inhibit gefitinib uptake, suggesting that CTL-1 did not contribute to the transport of gefitinib.

During cancer therapy, gefitinib is often co-administered with a range of other drugs. It is of note that gefitinib significantly reduced uptake of MPP in hOCT1 and hOCT2 overexpressing cells, suggesting that gefitinib exerts an inhibitory effect on the intracellular accumulation of drugs transported by hOCT1 and hOCT2 such as metformin, an anti-diabetic drug [14]; oxaliplatin [16]; cisplatin [15]; quinine, an antimalarial drug and debrisoquine, an antihypertensive drug [12,45]. Therefore co-administration of these drugs with gefitinib may inhibit their uptake and may have a clinically relevant impact. For instance, the concomitant use of gefitinib with metformin may compromise optimal glycemic control in diabetic patients.

Gefitinib was highly concentrated in the intracellular compartment in all cell lines tested. However, at 1 \(\mu\text{M}\), the average plasma concentration of gefitinib obtained at the clinically administered dose [27], the intracellular concentration in resistant-cell lines was higher than in gefitinib-sensitive cells and in any case largely sufficient to inhibit EGFR autophosphorylation.

On the basis of these results, one of the proposed mechanisms for the development of resistance to gefitinib [5] and other TKI [18,19,33], i.e. a reduced concentration of the bioactive drug within the cells, can be ruled out. However, at present, we cannot exclude that over longer periods of incubation, gefitinib might be metabolized and extruded differently by gefitinib-resistant and -sensitive cells.

Acknowledgements

This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro); Associazione Davide Rodella, Montichiari, BS; Ministero della Salute (Programma straordinario di ricerca oncologica 2006) Regione Emilia Romagna; Associazione Marta Nurizzo, Brugherio MI; CONAD, Bologna; Associazione Chiara Tassoni, Parma; A.V.O.PRO.R.I.T., Parma and Lega Italiana per la lotta contro i tumori, Sezione di Parma.

We thank Dr. H. Koepsell for providing us with HEK293 cells transfected with organic ion transporters, Dr. E. Giovannetti for providing us with H1975 cell line and Dr. P. Janne for providing us with PC9 cell line.

References

